API Reference
MultiBisect.bisect
MultiBisect.corners
MultiBisect.domainindex
MultiBisect.edgebounds
MultiBisect.edgedim
MultiBisect.edgeindices
MultiBisect.edgeroot
MultiBisect.edges
MultiBisect.edgetuple
MultiBisect.edgevalues!
MultiBisect.expandzeros
MultiBisect.findhypercubes
MultiBisect.forwardinds
MultiBisect.interpolate
MultiBisect.interpolate
MultiBisect.linearroot
MultiBisect.marchingsquares
MultiBisect.splitsign
MultiBisect.bisect
— Methodbisect(f, grid; threaded=false, monotonic=false, iterations=5, verbose=false)
Perform the multidimensional bisection algorithm of function f
on an initial grid
of evaluation points.
Arguments
Positional Arguments
f
: function to be evaluatedgrid
: a tuple of ranges describing the initial evaluation grid
Keyword Arguments
threaded
: set totrue
for multithreaded evaluationmonotonic
: set to true iff
is known to be monotonic in each dimensioniterations
: number of times to iterate the algorithmverbose
: set totrue
to print the number of new function evaluations at each iteration
Examples
julia> grid = (0.0:1.0, 0.0:1.0);
julia> bisect(x -> 1 - sum(abs2, x), grid)
BisectionGrid{Float64, 2}
Domain: (0.0:0.0625:1.0, 0.0:0.0625:1.0)
Grid points: 289
Evaluations: 112
Edges: 32
julia> bisect(x -> x[2] - x[1], grid)
BisectionGrid{Float64, 2}
Domain: (0.0:0.0625:1.0, 0.0:0.0625:1.0)
Grid points: 289
Evaluations: 112
Edges: 32
julia> bisect(x -> x[2] - x[1], grid; monotonic=true)
BisectionGrid{Float64, 2}
Domain: (0.0:0.0625:1.0, 0.0:0.0625:1.0)
Grid points: 289
Evaluations: 67
Edges: 32
Extended help
Algorithm
The algorithm begins with an initial evaluation grid of $N$-dimensional hypercubes (lines, squares, cubes, etc.) and proceeds by splitting it in "half" at each stage, but only in regions where the function is known to change sign. After the function is evaluated, each hypercube is split in half (a line into two lines, a square into four squares, a cube into eight cubes, etc.) and the function sign at each vertex is checked. If not all vertices share the same sign, the function must change sign somewhere within the hypercube, so the vertices of the subcubes (e.g. the midpoint of a line) will be marked for evaluation in the next stage; if the vertices all share the same sign, the function is presumed to have the same sign everywhere throughout the hypercube, so the sign is inferred at all interior points and the function is not evaluated in the hypercube again.
By passing the keyword monotonic=true
, the algorithm further assumes that the function cannot change sign in any one direction between two points with the same sign. This means that the sign of the function should be checked at the vertices of each edge of the hypercube; if the signs are the same, the function is assumed to have the same sign at the midpoint along the edge and will not be evaluated.
Multithreading
Set the keyword argument threaded=true
to make evaluation of the function at each iteration multithreaded. For functions that are very cheap to evaluate, the overhead from setting up threads will actually make each iteration longer. However, this effect disappears quickly.
Example
julia> ffast(x) = 1 - sum(abs2, x);
julia> grid = (0.0:1.0, 0.0:1.0);
julia> @btime bisect(ffast, $grid; threaded=false);
49.720 μs (40 allocations: 3.59 KiB)
julia> @btime bisect(ffast, $grid; threaded=true);
146.173 μs (163 allocations: 18.23 KiB)
julia> fslow(x) = (sleep(0.1); ffast(x))
fslow (generic function with 1 method)
julia> @btime bisect(fslow, $grid; threaded=false);
11.397 s (605 allocations: 20.83 KiB)
julia> @btime bisect(fslow, $grid; threaded=true);
3.170 s (736 allocations: 35.45 KiB)
Monotonicity
If the function f
is known to be monotonic, then the number of evaluations can be reduced by inferring the behavior of f
along edges where both vertices have the same sign.
Example
julia> bisect(x -> 1 - sum(abs2, x), (0.0:1.0, 0.0:1.0); monotonic=false)
BisectionGrid{Float64, 2}
Domain: (0.0:0.0625:1.0, 0.0:0.0625:1.0)
Grid points: 289
Evaluations: 112
Edges: 32
julia> bisect(x -> 1 - sum(abs2, x), (0.0:1.0, 0.0:1.0); monotonic=true)
BisectionGrid{Float64, 2}
Domain: (0.0:0.0625:1.0, 0.0:0.0625:1.0)
Grid points: 289
Evaluations: 80
Edges: 32
Iterations
For finer grids, repeat the algorithm for more iterations.
Example
julia> bisect(x -> 1 - sum(abs2, x), (0.0:1.0, 0.0:1.0))
BisectionGrid{Float64, 2}
Domain: (0.0:0.0625:1.0, 0.0:0.0625:1.0)
Grid points: 289
Evaluations: 112
Edges: 32
julia> bisect(x -> 1 - sum(abs2, x), (0.0:1.0, 0.0:1.0); iterations=3)
BisectionGrid{Float64, 2}
Domain: (0.0:0.25:1.0, 0.0:0.25:1.0)
Grid points: 25
Evaluations: 22
Edges: 8
julia> bisect(x -> 1 - sum(abs2, x), (0.0:1.0, 0.0:1.0); iterations=7)
BisectionGrid{Float64, 2}
Domain: (0.0:0.015625:1.0, 0.0:0.015625:1.0)
Grid points: 4225
Evaluations: 490
Edges: 128
Logging
For longer-running bisections, it may be useful to report the number of new evaluations as a kind of thread-safe progress meter.
Example
julia> bisect(x -> 1 - sum(abs2, x), (0.0:1.0, 0.0:1.0); verbose=true)
[ Info: Iteration 1: 4 gridpoints (4 evaluations)
[ Info: Iteration 2: 9 gridpoints (5 evaluations)
[ Info: Iteration 3: 25 gridpoints (13 evaluations)
[ Info: Iteration 4: 81 gridpoints (29 evaluations)
[ Info: Iteration 5: 289 gridpoints (61 evaluations)
BisectionGrid{Float64, 2}
Domain: (0.0:0.0625:1.0, 0.0:0.0625:1.0)
Grid points: 289
Evaluations: 112
Edges: 32
julia> bisect(x -> 1 - sum(abs2, x), (0.0:1.0, 0.0:1.0); verbose=true, iterations=7)
[ Info: Iteration 1: 4 gridpoints (4 evaluations)
[ Info: Iteration 2: 9 gridpoints (5 evaluations)
[ Info: Iteration 3: 25 gridpoints (13 evaluations)
[ Info: Iteration 4: 81 gridpoints (29 evaluations)
[ Info: Iteration 5: 289 gridpoints (61 evaluations)
[ Info: Iteration 6: 1089 gridpoints (125 evaluations)
[ Info: Iteration 7: 4225 gridpoints (253 evaluations)
BisectionGrid{Float64, 2}
Domain: (0.0:0.015625:1.0, 0.0:0.015625:1.0)
Grid points: 4225
Evaluations: 490
Edges: 128
MultiBisect.corners
— Methodcorners(CI::CartesianIndices)
Construct an iterator over the corners of the hypercube defined by CI
.
Examples
julia> CI = CartesianIndices((1:3, 1:4))
CartesianIndices((1:3, 1:4))
julia> collect(CI)
3×4 Matrix{CartesianIndex{2}}:
CartesianIndex(1, 1) CartesianIndex(1, 2) … CartesianIndex(1, 4)
CartesianIndex(2, 1) CartesianIndex(2, 2) CartesianIndex(2, 4)
CartesianIndex(3, 1) CartesianIndex(3, 2) CartesianIndex(3, 4)
julia> corners(CI)
CartesianIndices((1:2:3, 1:3:4))
julia> collect(corners(CI))
2×2 Matrix{CartesianIndex{2}}:
CartesianIndex(1, 1) CartesianIndex(1, 4)
CartesianIndex(3, 1) CartesianIndex(3, 4)
MultiBisect.domainindex
— Methoddomainindex(X, I::CartesianIndex)
Like getindex
, except X
is a tuple of ranges instead of an array.
Examples
julia> X = (1.0:5.0, 0.5:2.5);
julia> domainindex(X, CartesianIndex(1, 1))
(1.0, 0.5)
julia> domainindex(X, CartesianIndex(2, 1))
(2.0, 0.5)
julia> domainindex(X, CartesianIndex(1, 2))
(1.0, 1.5)
julia> domainindex(X, last(CartesianIndices(eachindex.(X))))
(5.0, 2.5)
MultiBisect.edgebounds
— Methodedgebounds(edge)
Return the bounds of the edge in its varying dimension.
Examples
julia> edgebounds(((0.5, 1.0), (1.0, 1.0)))
(0.5, 1.0)
julia> edgebounds(((0.5, 1.0), (0.5, 1.5)))
(1.0, 1.5)
julia> edgebounds(((1.0, 1.0, 1.0), (1.0, 1.0, 2.0)))
(1.0, 2.0)
MultiBisect.edgedim
— Methodedgedim(edge)
Return the dimension of the edge (i.e. the only direction in which the vertices vary).
Examples
julia> edgedim(((0.5, 1.0), (1.0, 1.0)))
1
julia> edgedim(((0.5, 1.0), (0.5, 1.5)))
2
julia> edgedim(((1.0, 1.0, 1.0), (1.0, 1.0, 2.0)))
3
MultiBisect.edgeindices
— Methodedgeindices(BG::BisectionGrid{T, N}) where {T, N}
Find the CartesianIndices
of all edges in the current grid domain.
MultiBisect.edgeroot
— Methodedgeroot(f, edge, M; kwargs...)
Find the root along edge
with a call to Roots.find_zero
. Both M
and kwargs
are passed directly to find_zero
.
Examples
julia> f(x) = 1 - sum(abs2, x); # unit circle
julia> BG = bisect(f, (0.0:1.0, 0.0:1.0); iterations=3);
julia> E = edges(BG)
8-element Vector{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}:
((0.75, 0.0), (1.0, 0.0))
((0.75, 0.25), (1.0, 0.25))
((0.75, 0.5), (1.0, 0.5))
((0.75, 0.5), (0.75, 0.75))
((0.0, 0.75), (0.0, 1.0))
((0.25, 0.75), (0.25, 1.0))
((0.5, 0.75), (0.75, 0.75))
((0.5, 0.75), (0.5, 1.0))
julia> tracks = Roots.Tracks();
julia> root = edgeroot(f, E[3], Roots.ITP(); tracks)
(0.8660254037844387, 0.5)
julia> f(root)
0.0
julia> tracks
Results of univariate zero finding:
* Converged to: 0.8660254037844387
* Algorithm: Roots.ITP{Float64, Int64}(0.2, 2, 1)
* iterations: 7
* function evaluations ≈ 9
* stopped as f(x_n) = 0
Trace:
(a₀, b₀) = ( 0.75, 1 )
(a₁, b₁) = ( 0.75, 0.86964285714285705 )
(a₂, b₂) = ( 0.86290337975046705, 0.86964285714285705 )
(a₃, b₃) = ( 0.86290337975046705, 0.8660279692952968 )
(a₄, b₄) = ( 0.86602344653979335, 0.8660279692952968 )
(a₅, b₅) = ( 0.86602344653979335, 0.86602540378563075 )
(a₆, b₆) = ( 0.86602540378367243, 0.86602540378563075 )
(a₇, b₇) = ( 0.86602540378443871, 0.86602540378563075 )
MultiBisect.edges
— Methodedges(BG::BisectionGrid)
Find all hypercube edges where the sign of the function changes. Returns a Vector
of 2-tuples of points in the domain.
MultiBisect.edgetuple
— Methodedgetuple(edge)
Return a function converting a value along the edge dimension to a point.
Examples
julia> tup = edgetuple(((0.5, 1.0), (1.0, 1.0)));
julia> tup(0.75)
(0.75, 1.0)
julia> tup(0.9)
(0.9, 1.0)
julia> edgetuple(((0.5, 1.0), (0.5, 1.5)))(1.2)
(0.5, 1.2)
MultiBisect.edgevalues!
— Methodedgevalues!(f, BG::BisectionGrid{T, N}; threaded=false, verbose=false) where {T, N}
Evaluate f
at all edge vertices where it has not been evaluated.
MultiBisect.expandzeros
— Methodexpandzeros(A)
Expand the array A, inserting a zero between each element.
Examples
julia> A = reshape(1:4, 2, 2)
2×2 reshape(::UnitRange{Int64}, 2, 2) with eltype Int64:
1 3
2 4
julia> expandzeros(A)
3×3 Matrix{Int64}:
1 0 3
0 0 0
2 0 4
julia> B = reshape(1:6, 3, 2)
3×2 reshape(::UnitRange{Int64}, 3, 2) with eltype Int64:
1 4
2 5
3 6
julia> expandzeros(B)
5×3 Matrix{Int64}:
1 0 4
0 0 0
2 0 5
0 0 0
3 0 6
MultiBisect.findhypercubes
— Methodfindhypercubes(A; dist=2)
Find the starting vertex of all hypercubes in the array A
.
Examples
julia> A = ones(Bool, 5, 5)
5×5 Matrix{Bool}:
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
julia> cubes = findhypercubes(A)
CartesianIndices((1:2:3, 1:2:3))
julia> collect(cubes)
2×2 Matrix{CartesianIndex{2}}:
CartesianIndex(1, 1) CartesianIndex(1, 3)
CartesianIndex(3, 1) CartesianIndex(3, 3)
julia> cubes3 = findhypercubes(ones(Bool, 5, 5, 5))
CartesianIndices((1:2:3, 1:2:3, 1:2:3))
julia> collect(cubes3)
2×2×2 Array{CartesianIndex{3}, 3}:
[:, :, 1] =
CartesianIndex(1, 1, 1) CartesianIndex(1, 3, 1)
CartesianIndex(3, 1, 1) CartesianIndex(3, 3, 1)
[:, :, 2] =
CartesianIndex(1, 1, 3) CartesianIndex(1, 3, 3)
CartesianIndex(3, 1, 3) CartesianIndex(3, 3, 3)
MultiBisect.forwardinds
— Methodforwardinds(d)
Get CartesianIndex steps forward in each of d
dimensions.
Examples
julia> forwardinds(1)
(CartesianIndex(1,),)
julia> forwardinds(2)
(CartesianIndex(1, 0), CartesianIndex(0, 1))
julia> forwardinds(3)
(CartesianIndex(1, 0, 0), CartesianIndex(0, 1, 0), CartesianIndex(0, 0, 1))
MultiBisect.interpolate
— Methodinterpolate(rootfinder, BG::BisectionGrid{T, N}; threaded=false) where {T, N}
Compute the roots along all bracketing edges of BG
.
The function rootfinder
can be any method that receives an edge and returns a root, such as edgeroot
, linearroot
, or marchingsquares
.
Examples
julia> f(x) = 1 - sum(abs2, x); # unit circle
julia> BG = bisect(f, (0.0:1.0, 0.0:1.0); iterations=3);
julia> interpolate(marchingsquares, BG)
8-element Vector{Tuple{Float64, Float64}}:
(0.875, 0.0)
(0.875, 0.25)
(0.875, 0.5)
(0.75, 0.625)
(0.0, 0.875)
(0.25, 0.875)
(0.625, 0.75)
(0.5, 0.875)
julia> interpolate(edge -> linearroot(f, edge), BG)
8-element Vector{Tuple{Float64, Float64}}:
(1.0, 0.0)
(0.9642857142857143, 0.25)
(0.8571428571428571, 0.5)
(0.75, 0.65)
(0.0, 1.0)
(0.25, 0.9642857142857143)
(0.65, 0.75)
(0.5, 0.8571428571428571)
julia> interpolate(edge -> edgeroot(f, edge, Roots.ITP()), BG)
8-element Vector{Tuple{Float64, Float64}}:
(1.0, 0.0)
(0.9682458365518543, 0.25)
(0.8660254037844387, 0.5)
(0.75, 0.6614378277661477)
(0.0, 1.0)
(0.25, 0.9682458365518543)
(0.6614378277661477, 0.75)
(0.5, 0.8660254037844387)
MultiBisect.interpolate
— Methodinterpolate(BG::BisectionGrid{T, N}) where {T, N}
Compute the roots along all bracketing edges of BG
with a linear approximation using precomputed function evaluations. Equivalent to interpolate(linearroot(f), BG)
, but does not require re-evaluating the function at each edge.
Examples
```jldoctest julia> f(x) = 1 - sum(abs2, x); # unit circle
julia> BG = bisect(f, (0.0:1.0, 0.0:1.0); iterations=3);
julia> interpolate(linearroot(f), BG) 8-element Vector{Tuple{Float64, Float64}}: (1.0, 0.0) (0.9642857142857143, 0.25) (0.8571428571428571, 0.5) (0.75, 0.65) (0.0, 1.0) (0.25, 0.9642857142857143) (0.65, 0.75) (0.5, 0.8571428571428571)
julia> interpolate(BG) 8-element Vector{Tuple{Float64, Float64}}: (1.0, 0.0) (0.9642857142857143, 0.25) (0.8571428571428571, 0.5) (0.75, 0.65) (0.0, 1.0) (0.25, 0.9642857142857143) (0.65, 0.75) (0.5, 0.8571428571428571)
MultiBisect.linearroot
— Methodlinearroot(f, edge)
Construct a linear interpolation of f
through edge
and return its root. Requires two function evaluations.
Examples
julia> f(x) = 1 - sum(abs2, x); # unit circle
julia> BG = bisect(f, (0.0:1.0, 0.0:1.0); iterations=3);
julia> E = edges(BG)
8-element Vector{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}:
((0.75, 0.0), (1.0, 0.0))
((0.75, 0.25), (1.0, 0.25))
((0.75, 0.5), (1.0, 0.5))
((0.75, 0.5), (0.75, 0.75))
((0.0, 0.75), (0.0, 1.0))
((0.25, 0.75), (0.25, 1.0))
((0.5, 0.75), (0.75, 0.75))
((0.5, 0.75), (0.5, 1.0))
julia> linearroot.(f, E)
8-element Vector{Tuple{Float64, Float64}}:
(1.0, 0.0)
(0.9642857142857143, 0.25)
(0.8571428571428571, 0.5)
(0.75, 0.65)
(0.0, 1.0)
(0.25, 0.9642857142857143)
(0.65, 0.75)
(0.5, 0.8571428571428571)
MultiBisect.marchingsquares
— Methodmarchingsquares(edge)
Return the midpoint of the edge, in a manner similar to the marching squares algorithm. Does not require any function evaluations.
Examples
julia> f(x) = 1 - sum(abs2, x); # unit circle
julia> BG = bisect(f, (0.0:1.0, 0.0:1.0); iterations=3);
julia> E = edges(BG)
8-element Vector{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}:
((0.75, 0.0), (1.0, 0.0))
((0.75, 0.25), (1.0, 0.25))
((0.75, 0.5), (1.0, 0.5))
((0.75, 0.5), (0.75, 0.75))
((0.0, 0.75), (0.0, 1.0))
((0.25, 0.75), (0.25, 1.0))
((0.5, 0.75), (0.75, 0.75))
((0.5, 0.75), (0.5, 1.0))
julia> marchingsquares.(E)
8-element Vector{Tuple{Float64, Float64}}:
(0.875, 0.0)
(0.875, 0.25)
(0.875, 0.5)
(0.75, 0.625)
(0.0, 0.875)
(0.25, 0.875)
(0.625, 0.75)
(0.5, 0.875)
MultiBisect.splitsign
— Methodsplitsign(BG::BisectionGrid)
Split the evaluated points of the bisection grid into a vector of positive points and a vector of negative points.
Examples
julia> BG = bisect(x -> 1 - sum(abs2, x), (0.0:1.0, 0.0:1.0); iterations=2)
BisectionGrid{Float64, 2}
Domain: (0.0:0.5:1.0, 0.0:0.5:1.0)
Grid points: 9
Evaluations: 9
Edges: 4
julia> posx, negx = splitsign(BG);
julia> posx
4-element Vector{Tuple{Float64, Float64}}:
(0.0, 0.0)
(0.5, 0.0)
(0.0, 0.5)
(0.5, 0.5)
julia> negx
5-element Vector{Tuple{Float64, Float64}}:
(1.0, 0.0)
(1.0, 0.5)
(0.0, 1.0)
(0.5, 1.0)
(1.0, 1.0)